Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation
نویسندگان
چکیده
منابع مشابه
Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation.
A long-standing hypothesis termed "Hebbian plasticity" suggests that memories are formed through strengthening of synaptic connections between neurons with correlated activity. In contrast, other theories propose that coactivation of Hebbian and neuromodulatory processes produce the synaptic strengthening that underlies memory formation. Using optogenetics we directly tested whether Hebbian pla...
متن کاملAssociative memory model with long-tail-distributed Hebbian synaptic connections
The postsynaptic potentials of pyramidal neurons have a non-Gaussian amplitude distribution with a heavy tail in both hippocampus and neocortex. Such distributions of synaptic weights were recently shown to generate spontaneous internal noise optimal for spike propagation in recurrent cortical circuits. However, whether this internal noise generation by heavy-tailed weight distributions is poss...
متن کاملAssociative Learning: Hebbian Flies
Fruit flies can learn to associate an odor with an aversive stimulus, such as a shock. New findings indicate that disrupting the expression of N-methyl-D-aspartate (NMDA) receptors in flies impairs olfactory conditioning. The findings provide support for a critical role for NMDA receptors in associative learning.
متن کاملRandom Perturbations to Hebbian Synapses of Associative Memory Using a Genetic Algorithm
We apply evolutionary algorithms to Hop eld model of associative memory. Previously we reported that a genetic algorithm using ternary chromosomes evolves the Hebb-rule associative memory to enhance its storage capacity by pruning some connections. This paper describes a genetic algorithm using real-encoded chromosomes which successfully evolves over-loaded Hebbian synaptic weights to function ...
متن کاملPossible involvement of neuromodulatory systems in cortical Hebbian-like plasticity.
Plasticity of neuronal covariances (functional plasticity) is controlled by behavior (Ahissar et al (1992) Science 257, 1412-1415). Whether this behavioral control involves neuromodulatory systems was tested by examining the effect of acetylcholine (ACh) and noradrenaline (NE) on functional plasticity in anesthetized animals and by comparing the effects of these neuromodulators in an anesthetiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2014
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1421304111